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Synopsis 

Penetrant transport through and solute release from continuously swelling polymers is viewed 
as a process d a t e d  with major structural changes in the polymer morphology. Changes in the 
diffusivities of penetrant and solute reflect a free volume mechanism for transport. The polymer is 
initially glassy with a uniform dispersion of solute. After the system is placed in contact with a 
thermodynamically good penetrant, a glassy/rubbery phase transition occurs at a well defined 
swelling interface. The Fickian equations with concentration-dependent diffusivities and moving 
boundaries are solved simultaneously in polymer-fixed coordinates. A constitutive relation is used 
to describe the effect of macromolecular relaxations on the rate of volume expansion as the 
polymer swells. The penetrant fractional uptake, solute fractional release, sample dimensions, 
swelling front position, and instantaneous swelling interface number are determined and related 
to  the nature of the swelling process. 

INTRODUCTION 

A common transport problem in polymer science is the description of the 
phenomenon of solute diffusion in a medium consisting of a polymer and a 
penetrant. In this case, a thermodynamically good solvent penetrates 
a polymer sample and the polymer-penetrant system releases or absorbs a 
solute. This situation adequately describes the release of an adjuvant from a 
polymer to a surrounding fluid; this compound is often a plasticizer, an 
antioxidant, a stabilizer, a residual monomer, an undesirable impurity, or an 
active agent. The case where the polymer-penetrant medium releases a solute 
in a controlled manner is of special interest as it has several practical 
applications. Agricultural uses include the release of pesticides, herbicides, and 
fertilizers from a polymer base to the surrounding soil. In these cases, the 
polymer base may degrade into a harmless product during the release of the 
active agent. Such systems could release germicides and algaecides in a 
controlled manner into recreational pools as well as preservatives and stabi- 
lizers to packaged foods. The leaching of chemical and radioactive waste from 
polymeric containers buried in storage facilities is also of current concern. An 
area of particular interest is in pharmaceutical applications where a polymer 
carrier releases bioactive agents and drugs to visceral fluids. 
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Controlled-release polymeric systems could offer a number of potential 
advantages over the present, conventional means of drug administration. 
Present methods include single doses or a succession of doses. These are 
administered either directly to the targeted area, for example by injection, or 
indirectly, such as by oral administration. Drug delivery is characteristically 
short in duration, and the amount delivered to the targeted area may deviate 
from desirable levels of concentration. The potential advantages of polymeric 
delivery systems include: (i) plasma drug concentration levels maintained in a 
desirable range; (ii) harmful side effects from systematic administration re- 
duced or eliminated by local administration from a polymer reservoir; 
(iii) delivery of agents which have short lifetimes in the body facilitated; 
and (iv) drug delivery extended over long periods of time. 

Pharmaceutical controlled-release systems have been classified according to 
the nature of the triggering cause or the mechanism of drug release.'.2 These 
mechanisms include: diffusion, chemical reaction, swelling, osmosis, ultra- 
sound, and magnetic control. 

In the swelling controlled-release systems the bioactive agent is dissolved or 
dispersed within a polymer matrix. The polymer matrix is usually in a dry (or 
glassy) state so that solute transport through this matrix is very long. If an 
environmental fluid is a thermodynamically good solvent for the polymer, it 
penetrates the polymer matrix. The polymer swells and the bioactive agent 
contained in the swollen region then diffuses through the polymer. Thus, the 
rate-determining step for the release is the swelling of the ~ o l y m e r . ~ , ~  

TRANSPORT IN SWELLING POLYMERS 

Description of Mechanisms 

The system under consideration is a uniform dispersion of solute (subscript 
3) in a dry (or glassy) polymer (subscript 2). In the solid state, the rate of 
solute release from the polymer is negligible. A thermodynamically good 
solvent (subscript 1) for the polymer is placed in contact with the system. The 
addition of penetrant leads to considerable volume expansion (swelling) and 
dramatic amplification of the solute release rate. The dynamic swelling 
behavior of the polymer, in most cases, controls the mechanism of solute 
transport through and release from the p ~ l y m e r . ~ . ~  

The solvent penetration and macromolecular extensions are intimately 
coupled while the polymer swells from the unperturbed to the solvated state. 
The increased chain mobility due to chain solvation allows chain extension 
which results in additional free volume for transport. The penetrant-induced 
chain extension is a dynamic relaxation phenomenon. The rate at  which the 
polymer chains reorient affects the rate of solvent penetration. Anomalous 
effects such as two-stage and overshoot sorption6*' are possible if the penetrant 
solubility is dependent on the macromolecular structure. Therefore, penetrant 
transport and polymer swelling may be strongly amplified by the increase in 
free volume. 

Figure 1 illustrates the solute-penetrant countercurrent transport in a thin 
slab of initial thickness, 2L,. As the polymer undergoes a glassy-rubbery 
transition at a volume fraction of penetrant, Gg, at the experiment tempera- 
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Fig. 1. Schematic representation of the symmetric swelling controlled-release system indicat- 

ing the polymer interface (A) and the swelling interface (B) for a slab geometry. 

ture, a clearly defined front develops between the glassy (unswollen) and 
rubbery (swollen) redoxma This front is known as the swelling interface. An 
additional front separates the rubbery state from the pure penetrant (polymer 
interface). The swelling interface moves toward the center line of the sample 
with a velocity, u ( t ) .  The swollen region has a thickness, 6( t ) .  

From a mathematical point of view, the problem of penetrant transport 
into the polymer and the associated problem of diffusional solute release from 
the polymer have been treated using Stefan moving boundary des~riptions.~,' 
The Stefan analysis applies the framework of continuum mechanics. Sim- 
plified solutions of the penetrant transport with constant volume or with 
constant diffusion coefficient are available.1°-12 Good ,13 Peppas et al.,14 Figge 
and Rudolph,15 Lee,16 Frisch," and Korsmeyer et al.l8 have provided general 
solutions for the solute release problem with various assumptions. All these 
studies assume the same constitutive relation for both the penetrant and 
solute fluxes; the product of the component diffusion coefficient and the 
concentration gradient describes the component flux. None of these treat- 
ments predict time-independent solute release or Case I1 solvent penetration 
rates. 

A complete mathematical analysis of the penetrant transport in swelling 
systems is not yet available. The main reasons for the lack of rigorous analysis 
are that (i) modeling problems related to this phenomenon are problems of 
simple or multicomponent diffusion with moving boundaries: (ii) the diffusion 
coefficients are coupled and concentration dependent; (iii) the appropriate 
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constitutive equations for the continuous relaxation of the macromolecular 
chains during transport must be developed; and (iv) penetrant-induced macro- 
molecular rearrangements affect penetrant transport and solubility. The latter 
problem is still the subject of the current research efforts of many investiga- 
tors; some will be described later. 

For the penetration of the solvent, a convenient method of analysis is in 
terms of the diffusional Deborah number, De. It is defined according to Eq. 
(l), where X is the characteristic stress-relaxation time of the polymer- 
penetrant system and 6 is the characteristic time for diffusion for the 
penetrant in the polymer. 

X 
De - 

6 

The two characteristic t ima have their respective definitions given in Eqs. (2) 
and (3) 

and 

where the integrals are over the entire relaxation time spectrum, G is the 
shear relaxation modulus, 8’ is the diffusional path length, and Dl,s is the 
diffusion coefficient of the penetrant in the swollen polymer. Vrentas et al.19320 

defined regions of Fickian and anomalous transport of the penetrant by 
calculating the value of De; this value is a function of both temperature and 
penetrant concentration. For De >> 1 and De << 1 the mechanism is Fickian 
diffusion. For De =* 1 the transition to the rubbery state is rate limited and 
penetration occurs mainly through the glassy, unswollen state. Conversely, for 
De << 1 the penetrant diffusion is rate limited and penetration occurs mainly 
through the rubbery, swollen polymer. For De of the order of unity, the 
penetration mechanism is an anomalous transport where macromolecular 
relaxation during the swelling process is intimately coupled with the solvent 
penetration. 
As in the case of penetrant transport, a complete mathematical analysis of 

the solute transport in swelling systems is not yet available for similar 
reasons. Currently, the effect of polymer swelling on solute transport is not 
well understood. It is useful to extend the mechanism of Fick’s law to this 
situation; that is, the driving force for solute transport is proportional to the 
gradient of solute chemical potential. Typically, the solute diffusion coefficient 
is approximately two to three orders of magnitude lower (when expressed in 
units of cm2/s) in an equilibrium glassy polymer than in the same polymer 
swollen in a good solvent. It is reasonable to utilize free volume-dependent 
penetrant and solute diffusion coefficients throughout the penetrant sorption 
and solute release. 
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Peppas and Franson2' and Hopfenberg et al.22 proposed that the analysis 
and prediction of mechanisms of diffusional solute release may be obtained 
through the swelling interface number, Sw. Its definition is given in Eq. (4) 

where Q, is the diffusion coefficient of the solute in the swollen phase, and 6 
is the rubbery phase thickness. This dimensionless number compares the 
relative mobilities of the penetrant and the solute of macromolecular relaxa- 
tions in the polymer. 

MATHEMATICAL MODELING 

A New Model 

This section provides a summary of a new model which describes the 
simultqeous penetrant transport (uptake) and solute release. The constitu- 
tive relation for a component flux is given by Fick's law. We consider solute 
release accompanying large changes in the penetrant and solute diffusivities. 
The process is modeled as a two-component diffusion in a continuous medium 
incorporating polymer structural changes in the diffusivity. 

The initial thickness, 2L0, and penetrant diffusivity in the equilibrium 
swollen gel, Ill, 8 ,  normalize the position and time scales. The equilibrium and 
loading concentrations nomdize the penetrant and solute concentration 
variables, respectively. 

x: 3 3 -  
LO 

Here the subscripts s and d denote equilibrium and initial loading concentra- 
tions, respectively. The right-hand side of Eq. (7) holds for constant penetrant 
molar volumes. Equations (9) and (10) present the transport rate equations for 
the penetrant and solute, respectively. 
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Initially, the dry polymer has a uniform loading of solute, i.e. 

and the system is in an Wte sink environment, i.e. 

Although these are typical boundary conditions for the constant volume 
problem, the reader should note that the solution uses a polymer-fixed, 
Lagrangiun coordinate system which allows the system to expand upon 
swelling. The expansion description ensues later. 

The normalized diffusivities are functions simplified from the free volume 
theory and dependent on penetrant concentration as shown. 

The free volume theory simplification originally proposed by Korsmeyer 
et al.18 utilizes coefficients /3, and which are material constants. The 
relative time scales for the penetrant sorption and solute release differ by the 
ratio of the solute diffusivity in the swollen gel, I)+, to the penetrant 
diffusivity in the swollen gel, Ill, s. 

The model allows for a differential, Lagrangian volume expansion SQ, 
according to the amount of penetrant contained in the volume. The two-sided 
geometry the differential volume element has double-fold symmetry; so that 
the diffusion problem is one-dimensional in Cartesian coordinates. The prin- 
cipal axis is parallel to the direction of transport and normal to the interface 
boundaries. The swelling description must include two spatial dimensions 

In accordance to experimental observations, the dimensionality of swelling, 
d,  changea during penetrant sorption. Despite the large degree of softening 
associated with the glassy to rubbery phase transition, the presence of a glassy 
core restricts the rubbery phase to one-dimensional swelling, d = 1. At some 
time, the symmetric swelling interfaces meet at the center of the slab and the 
glassy core vanishes. This fact removes the one-dimensional swelling con- 
straint due to the drastic decrease of modulus and the swelling continues in an 
isotropic mode, d = 3. 

At equilibrium swelling, there exists an amount of penetrant at  a volume 
fraction +g, eg which has sufEciently extended and separated the macromolecu- 
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lar chains to permit mobility and bring about a transition between the 
polymer glassy and rubbery states. The value of +g,eq is determined from 
thermodynamic interactions between the polymer and penetrant a t  mechani- 
cal equilibrium. Macromolecular mobility is not present in the glassy phase. 
Since macromolecular extensions occur via relaxational, cooperative motions it 
does not seem reasonable that the glassy to rubbery phase transition occurs 
where the local penetrant volume fraction is +gJeq a t  mechanical nonequi- 
librium. Instead, this model defines the swelling interface at the position, S,, 
where the local elongation, ' a x ,  is equal to the critical elongation, 'a,. This 
critical one-dimensional elongation is related to the equilibrium swelling 
penetrant volume fraction as defined below. 

Therefore the swelling interface is defined at  the position where the local 
elongation is equal to the elongation at mechanical equilibrium swelling where 
the penetrant volume fraction is +gg,eq. Similarly, the instantaneous equi- 
librium local elongation, &aeq, T, is defined by equation (19). 

1 

It is assumed that the solute volume is negligible. This would be a reasonable 
assumption at low loadings or small solute specific volumes. Thus, according 
to Eq. (18) the sum of the penetrant and solute volume fractions is approxi- 
mately unity. 

This formulation accounts for a slow relaxation process which may not be 
rapid with respect to the overall sorption process. Thus the incremental 
expansion within a differential volume element is not directly related to the 
instantaneous penetrant concentration in the simple manner presented in Eq. 
(19). In order to characterize the time-dependent macromolecular relaxations 
and expansion, the model uses an assumed constitutive relation for 
relaxation-controlled volume expansion. The constitutive relation expresses 
the rate of polymer specific volume change as proportional to the difference 
between the equilibrium and instantaneous differential specific volumes, Veq, 
and V,, respectively, for any instantaneous local penetrant concentration. 

- -  dv ,  K q , t -  v, - 
dt x 

Here the constant of proportionality, A ,  is a characteristic relaxation time. 
The volumes in the constitutive equation are normalized by the initial 
volume, the times are according to equation (6), and the equation is combined 
with the relations between volume swelling and local elongation to obtain the 
final form in Eq. (21). 
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Here the Deborah number, De is defined as 

The Deborah number of Eq. (22) has the same functional form as the Deborah 
number defined in Eq. (1) and Saeq, , is the instantaneous equilibrium elonga- 
tion defined in Eq. (19). The solution of Eq. (21) can be approximated 
analytically and employed during the numerical implementation of the model. 

This objective, timediscretized, constitutive equation is applied at each 
polymer-fixed position during an explicit time step integration. 

The algorithm provides calculations for further analysis. Since the front 
velocity and rubbery phase thickness, S,, are generally time dependent, we 
define an instantaneous swelling interface number, Sw,. 

The instantaneous position, l,, at which Sa = Sag,., defines the position of 
the swelling interface. The front velocity, u,, is then d(,/dr. Crank23 gives an 
expression for an average solute diffusivity in the rubbery region as follows: 

J' W 1 ) d J l l  
(25) 

h 8  - 
D3 = 

1. - Jll,, 

The nondimensional concentration of penetrant at  the swelling interface, +1, g, 
is defined as the local value of Jll where l = l,. Given the penetrant con- 
centration dependence of the solute diffusivity in Eq. (16), the average solute 
diffusivity in the rubbery region can be calculated analytically using Eq. (26). 

Thus, it is possible to compute the instantaneous swelling interface number 
during the model implementation. 

NUMERICAL IMPLEMENTATION OF THE MODEL 

The dimensionless concentrations Jll and +3 have been defined in the 
previous section to minimize numerical round-off errors during an explicit 
time integration. These errors are the result of the addition of small numbers 
( s  10-lo) th values on the order of unity. This has been observed to be an 
especially important consideration for small time increments at  small times 
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and for large values of /3, and b3. This effect is not important using these 
dimensionless concentrations until the attainment of 90-958 of final values 
for both penetrant and solute. 

The model was solved using the well-known method of Zims algorithm for 
finite differences. The spatial derivatives were approximated by a second-order 
Lagrangian finite-difference operator allowing the distances between polymer 
particles to change continuously during the numerical implementation. Time 
integration was accomplished by a fourth-order Runge-Kutta method. 

Convergence was studied for a case consisting of rather stiff model parame- 
ters: = 0.5, De = 8, = p3 = 7.0, D3,s/D1,s = 10.0. These values 
result in large changes in both spatial elongation and diffusivities. The 
criterion used for convergence is that changes in a plot of MT/Mm versus r for 
both the penetrant and solute are smaller than 0.1% for MT/Mm < 0.80. The 
use of 75 spatial nodes and A7 = satisfies this criterion for these 
parameter values. Therefore, these spatial and temporal increments were used 
in all subsequent calculations for parameter values which seemed to be less 
stiff. 

The accuracy of the method was checked against the analytical solution for 
the penetrant uptake for constant volume and diffusivity. The required model 
parameters are + l ,eq  = 0.0 and 8,  = 0.0. The analytical solution is given in 
equation (27). 

8 m 
exp( - (2n + 1)2a2r/4) (27) 

-=I-  MT c 
M m  n-0 (2n + 1)2a2 

The aforementioned convergence criterion was satisfied easily using only 50 
spatial increments and A r  = 

The interested reader should consult one of the authors for the vector 
FORTRAN listing of program IBP. This program implemented the model on 
the Cyber 205 at the Purdue University Computing Center. 

RESULTS AND DISCUSSION 

The specification of seven independent parameters results in unique, simul- 
taneous solutions for the penetrant transport and solute release diffusion 
equations. The parameters are as follows: 

1. 

2. 

3. 

4. 
5. 

6. 

The m a t e d  constant which describes the penetrant diffusivity as a 
function of penetrant concentration, /3, 
The material constant which d d b e s  the solute diffusivity as a function 
of penetrant concentration, & 
The penetrant volume fraction at which the polymer rubbery/glassy phase 
transition occu~s, +g 
The penetrant volume fraction in the equilibrium swollen polymer, +eq 

The ratio of the solute and penetrant diffusivities in the fully swollen 

The ratio of the characteristic relaxation and diffusion times, De 
Polymer, B = 4, JDl.8 

The remainder of this section contains a d d p t i o n  of the importance of each 
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parameter in the model as illustrated by a series of sample solutions. Each set 
of model solutions contains typical values, such as the time-dependent frac- 
tional solute release and penetrant uptake, swelling interface number, system 
thickness, front velocity, and the order of solute release. Table I contains a 
summary of the trends observed from several solutions of this model. 

is zero, the penetrant 
diffusivity is constant and ordinary, Fickian diffusion is described by the 
model. Figures 2 through 5 show penetrant and solute concentration profiles 
for /3, = 0 and 8, = 6.91. Typically, sharper profiles are attained with high 
values of 8,. Equation (15) indicates that an increase in 8, lowers the 
penetrant diffusivity for any given penetrant concentration. Figure 6 il- 
lustrates the penetrant diffusivity concentration dependence at  several values 
of /3,. The penetrant d ih iv i ty  is a smooth, increasing function of penetrant 
concentration, independent of the glassy/rubbery phase regions. At values of 
/I1 =r 2, there is a sharp increase in diffusivity at  higher penetrant concentra- 
tions. The implications of this behavior are discussed later as this simple, 
exponential dependence is a simplification of the free volume theory. One 
expects an increase in penetrant diffusivity typically of 1 or 2 orders of 
magnitude between the initial and final phases of the swellable polymer. This 
corresponds to p1 values of 2.30 and 3.91, respectively. 

An increase in p1 delays the increase in penetrant diffusivity D, until 
higher penetrant concentrations are attained. An increasing diffusivity offsets 
the sorption rate retarding at late times due to a flatter concentration 
gradient. This extends the overall sorption process a peat deal since the 
system starts with a very low dihivi ty .  The extension in sorption time 
naturally implies a decrease in the front velocity. Therefore, the slab expands 
to a greater thickness as relatively more time is spent swelling in one 
dimension. High values of 8, also cause a steep concentration gradient as the 

The model is sensitive to changes in /Il. When 
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Fig. 2. Penetrant concentration profile for the case of constant solute and penetrant diffusiv- 

ities and constant volume with & = B3 = +eq = 0, and D38/D18 = 0.1. The origin is taken as the 
left edge of the system and the profile shows the left half of the slab. Penetrant profile history 
shown for dimensionless times: 0.05 (l), 0.10 (2), 0.15 (3), 0.20 (4), 0.25 (5), 0.30 (6), 0.35 (7). 

diffusion is retarded. Figure 2 shows a smooth penetrant concentration profile 
at low values of &, and Figure 3 shows the concentration profile under the 
same conditions with higher values of &. In these figures, the left side of the 
diagram represents the origin and the system expands to the right during 
swelling. A comparison of these two figures clearly illustrates that the sorp- 
tion rate decreases. At any common position and time, the concentration 
corresponding to a diffusion coefficient with a high value of & is lower than 
for a penetrant diffusion coefficient with a small value of &. 

The kinetics of solute release is sensitive to the value of p3. The solute 
diffusivity increases two to three orders of magnitude between the dry and 
fully swollen polymer states. This corresponds to values of p3 of 4.61 and 6.91, 
respectively. 

The effect of p3 is apparent in the swelling interface number model analysis. 
Equations (24) and (26) indicate that an increase in p3 decreases the swelling 
interface number. Increasing f13 increases the delay in solute release until 
higher penetrant concentrations are attained, similar to the effect of 8,  on the 
penetrant diffusivity. 

Although the penetrant activity is coupled to the solute diffusivity, there is 
no solute activity coupling of the penetrant sorption. Thus, the value of p3 
has no effect on either the penetrant sorption kinetics, system thickness, or 
the swelling front velocity. This is a weakness of this model since the solute 
activity and volume fraction are negligible at only low solute loadings. 
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Penetrant Concentration, \cI, 
Fig. 6. Penetrant and solute difkivity as functions of penetrant concentration for /I1 = 

0,2,4,6,8. 
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The value of equilibrium penetrant value fraction, +g, reflects penetrant- 
polymer thermodynamic compatibility and the proximity of the experimental 
temperature to the glass transition temperature. Small values of 'pg (e.g., 
0.01 5 (Pg 5 0.2) imply facile plasticization and macromolecular lability. 

An increase in the value of qg extends the time period during which the 
system expands in one dimension. If macromolecular relaxations are relatively 
fast, the one-dimensional swelling elongates the system to a greater extent 
than would isotropic, three-dimensional swelling. The polymer thickness de- 
creases when the symmetric swelling interfaces meet at the center of the 
sample. This volume change effectively compresses the penetrant and solute 
concentration gradients causing accelerations in sorption and release. If the 
relaxations are not very fast, this acceleration can become complementary to 
the retardation of solute release rate and produce portions of the release curve 
which are roughly hear with time. Relatively slower macromolecular relaxa- 
tions inhibit the rate at  which the sample elongates as it  swells. The change in 
penetrant sorption is subtle if either the increase in dif€usivity has already 
allowed the transport to near completion, for instance, at  high B, and long 
times, or the system collapses relatively early in the sorption process, such as 
at low +g. The effect becomes more evident when the system collapses midway 
during the penetrant sorption. 

An increase in the value of +g has little effect on the swelling interface 
velocity. Although the solute diffusivity is a function of penetrant concentra- 
tion, it is not a function of the equilibrium phase transition concentration. A 
pronounced effect is observable on the swelling interface number. An increase 
in +g delays the presence of the rubbery phase until higher penetrant con- 
centrations are attained. Since the penetrant contributes free volume to the 
sample, the average solute diffusivity in the rubbery phase is increased. The 
net effect is a decrease in the swelling interface number with an increase in +g. 

An indication of the polymer's thermodynamic compatibility with the 
penetrant is the value of the equilibrium volume fraction of penetrant, qeq. 
The value of +eq determines the extent of swelling and thickness change. An 
increase in the value of +eq increases the thickness in both the isotropic and 
anisotropic swelling processes (see Table I). 

The value of +eq has a prominent effect on the kinetics of penetrant 
sorption. Increasing system thickness during swelling extends the overall 
penetrant sorption and solute release as the concentration gradient is reduced. 
Finally, increase of both swelling front velocity and rubbery region thickness 
cause an increase in the swelling interface number and order of release. 

A weakness of this model is that it  neglects the volume fraction of the 
solute. Thus the model allows the thee-component system to overexpand. 
This effect is significant at loadings greater than probably 15% vol/vol. 
Inclusion of this consideration would require the addition of yet another 
parameter, the solute loading volume fraction, +3, d. 

Unidirectional coupling between the penetrant sorption and solute release 
kinetics occurs may be expressed by the ratio of the solute to the penetrant 
diffusivities in the equilibrium swollen polymer, h This constant sets the 
relative time scale between the two processes (see Table I). Since the model 
excludes coupling between the solute release kinetics and the penetrant 
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sorption kinetics, the value of b has no effect on either the system thickness 
or the swelling front velocity. 

Relaxation-controlled volume expansion has been incorporated in the model 
to investigate the experimentally observed anomalous transport behavior. The 
relaxation-controlled volume expansion theory used in this model is remi- 
niscent of the Kelvin-Voigt constitutive relationz4 for stress-relaxation experi- 
ments. Although a single characteristic relaxation time has been employed, 
this restriction is by no means necessary. The Kelvin-Voigt had been origi- 
nally utilized for describing time-dependent, macromolecular resistance to 
displacements induced in creep experiments. This treatment implies similar 
time-dependent, macromolecular resistance to the volumetric swelling induced 
by the incorporation of penetrant. In addition, the local elongation has been 
used to distinguish the dynamic motion of the swelling interface. 

It should be pointed out that the characteristic relaxation time, A, is 
treated rigorously as both time- and penetrant-concentration dependent.z4 
Thus the Deborah number might be more appropriately treated as an instan- 
taneous quantity.% Relaxation-controlled volume expansion during solvent 
penetration has not been investigated with a similar model; for now, we are 
interested in the simple case where it is constant. Small values of De, such as 
5 imply fast macromolecular rearrangements, low elongational resis- 
tance. This results in fast polymer and swelling interface front velocities and a 
sharp thickness collapse as the glassy core vanishes. Larger values of De, such 
as 5 De 5 0.5, result in more gradual changes in elongation and possess 
the characteristic exponential-type thickness collapsez5* 26 when the glassy 
core vanishes. 

Increasing values of the Deborah number lead to a delay of the formation 
and the velocity of the swelling interface and thus result in a smaller 
instantaneous swelling interface number (see Table I). This is suspected to be 
somewhat of an artificial effect since the penetrant and solute diffusivities 
may not correctly express the actual free volume in the modeled polymer, that 
is, the local solute diffusivity should possess a dependence on the local 
polymer (glassy/rubbery) phase. Larger values of De may erroneously result 
in faster solute release and penetrant sorption rates since the concentration 
gradient is not diminished by elongation of the system. 

CONCLUSIONS 

A new model was developed to describe penetrant transport through and 
solute release from continuously swelling polymers simultaneously exhibiting 
a glassy/rubbery phase transition at a moving boundary. The model utilizes a 
F'ickian mechanism for a component flux where the diffusivity incorporates a 
simplification of the phenomenological free volume theory. A constitutive 
equation describes volume expansion which is governed by macromolecular 
relaxations. The model d d h s  several experimentally observed phenomena 
in polymer swelling, penetrant sorption, and solute release. Among the most 
significant characteristics of this model are its ability to describe the changes 
in system shape and portions of penetrant sorption and solute release where 
the rates are independent of time, as observed experimentally. 
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Although the model requires seven parameters for a solution, each parame- 
ter has well-established physical importance and could be determined from 
independent experiments. The simplification of the free volume theory used to 
describe the concentration-dependent difhsivities has resulted in the intro- 
duction of lumped parameters & and &. These parameters can be measured 
by spectroscopic techniques.'8 Future improvements in this model can be 
easily incorporated by using the more rigorous free volume theory at  the 
expense of increased computational effort. 

Concentration 
Dimensionality of swelling 
Diffusional Deborah number 
Diffusion coe5cient 
Average diffusion coe5cient, as defined by equation (25) 
Normalized solute diffusivity 
Stress-relaxation modulus 
Initial thickness 
Instantaneous mass 
Asymptotic mass at  iniinite time 
Swelling Interface number 
Time 
Position 

Greek Letters 
Parameter describing the penetrant concentration dependence of a diffusion coe5cient, as 
described in Eqs. (15) and (16) 
Initial sample thickness 
Rubbers region thickness 
Dimemionless podlition 
Characteristic difFusion time 
Characteristic relaxation time 
Dimensionless time 
Swelling interface velocity 
Volume fraction 
Dimensionless concentration 

Subscripts 
Quantity at an initial, loading condition 
Quantity at an equilibrium state 
Quantity at the glaasy/rubbery transition 
Initial quantity 
Equilibrium, swollen state 
Instantaneous quantity 
Penetrant or solvent speciea 
Polymer species 
solute species 
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